

Chapter 5

Discrete Probability Distributions

Objectives

In this chapter, you learn:

- The properties of a probability distribution.
- To compute the expected value and variance of a probability distribution.
- To compute probabilities from binomial, and Poisson distributions.
- To use the binomial, and Poisson distributions to solve business problems

Definitions

- Discrete variables produce outcomes that come from a counting process (e.g. number of classes you are taking).
- Continuous variables produce outcomes that come from a measurement (e.g. your annual salary, or your weight).

Types Of Variables

Discrete Variables

Can only assume a countable number of values

Examples:

Roll a die twice Let X be the number of times 4 occurs (then X could be 0, 1, or 2 times)

Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)

Probability Distribution For A Discrete Variable

A probability distribution for a discrete variable is a mutually exclusive listing of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome.

Interruptions Per Day In Computer Network	Probability
0	0.35
1	0.25
2	0.20
3	0.10
4	0.05
5	0.05

Probability Distributions Are Often Represented Graphically

Discrete Variables Expected Value (Measuring Center)

 Expected Value (or mean) of a discrete variable (Weighted Average)

$$\mathbf{E}^{\flat} \quad \mathrm{E}(\mathrm{X})^{\flat} \quad \mathbf{P}^{N} \quad \mathbf{x}_{i} P(\mathbf{X}^{\flat} \quad \mathbf{x}_{i})$$

Interruptions Per Day In Computer Network (x _i)	Probability P(X = x _i)	$x_i P(X = x_i)$
0	0.35	(0)(0.35) = 0.00
1	0.25	(1)(0.25) = 0.25
2	0.20	(2)(0.20) = 0.40
3	0.10	(3)(0.10) = 0.30
4	0.05	(4)(0.05) = 0.20
5	0.05	(5)(0.05) = 0.25
	1.00	$\mu = E(X) = 1.40$

Discrete Variables: Measuring Dispersion

(continued)

Interruptions Per Day In Computer Network (x _i)	Probability P(X = x _i)	[x _i - E(X)] ²	$[x_i - E(X)]^2 P(X = x_i)$
0	0.35	$(0-1.4)^2 = 1.96$	(1.96)(0.35) = 0.686
1	0.25	$(1-1.4)^2 = 0.16$	(0.16)(0.25) = 0.040
2	0.20	$(2-1.4)^2 = 0.36$	(0.36)(0.20) = 0.072
3	0.10	$(3-1.4)^2 = 2.56$	(2.56)(0.10) = 0.256
4	0.05	$(4-1.4)^2 = 6.76$	(6.76)(0.05) = 0.338
5	0.05	$(5-1.4)^2 = 12.96$	(12.96)(0.05) = 0.648
			$\sigma^2 = 2.04, \ \sigma = 1.4283$

Discrete Variables: Measuring Dispersion

(continued)

Interruptions Per Day In Computer Network (x _i)	Probability P(X = x _i)	[x _i - E(X)] ²	$[x_i - E(X)]^2 P(X = x_i)$
0	0.35	$(0-1.4)^2 = 1.96$	(1.96)(0.35) = 0.686
1	0.25	$(1-1.4)^2 = 0.16$	(0.16)(0.25) = 0.040
2	0.20	$(2-1.4)^2 = 0.36$	(0.36)(0.20) = 0.072
3	0.10	$(3-1.4)^2 = 2.56$	(2.56)(0.10) = 0.256
4	0.05	$(4-1.4)^2 = 6.76$	(6.76)(0.05) = 0.338
5	0.05	$(5-1.4)^2 = 12.96$	(12.96)(0.05) = 0.648
			$\sigma^2 = 2.04, \ \sigma = 1.4283$

Probability Distributions

Binomial Probability Distribution

(continued)

- Observations are independent
 - The outcome of one observation does not affect the outcome of the other
 - Two sampling methods deliver independence
 - Infinite population without replacement
 - Finite population with replacement

Binomial Probability Distribution

(continued)

- Observations are independent
 - The outcome of one observation does not affect the outcome of the other
 - Two sampling methods deliver independence
 - Infinite population without replacement
 - Finite population with replacement

Possible Applications for the Binomial Distribution

- A manufacturing plant labels items as either defective or acceptable
- A firm bidding for contracts will either get a contract or not
- A marketing research firm receives survey responses of "yes I will buy" or "no I will not"
- New job applicants either accept the offer or reject it

The Binomial Distribution Counting Techniques

- Suppose the event of interest is obtaining heads on the toss of a fair coin. You are to toss the coin three times. In how many ways can you get two heads?
- Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.
- This situation is fairly simple. We need to be able to count the number of ways for more complicated situations.

Counting TechniquesRule of Combinations

- How many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?
- The total choices is n = 31, and we select X = 3.

```
_{31}C_{3}^{\ b} = \frac{31!}{3!(3113)!} + \frac{31!}{3!28!} + \frac{31130129128!}{3121128!} + 3115129^{b} + 4,495
```

Counting TechniquesRule of Combinations

- How many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from and no flavor can be used more than once in the 3 scoops?
- The total choices is n = 31, and we select X = 3.

```
_{31}C_{3}^{\ b} = \frac{31!}{3!(3113)!} + \frac{31!}{3!28!} + \frac{31130129128!}{3121128!} + 3115129^{b} + 4,495
```

Binomial Distribution Formula

$$P(X=x | n,\pi) = \frac{n!}{x! (n-x)!} \pi^{x} (1-\pi)^{n-x}$$

- $P(X=x|n,\pi)$ = probability of **x** events of interest in **n** trials, with the probability of an "event of interest" being π for each trial
 - x = number of "events of interest" in sample,(x = 0, 1, 2, ..., n)
 - n = sample size (number of trials or observations)
 - π = probability of "event of interest"

Example: Flip a coin four times, let x = # heads:

$$n = 4$$

$$\pi = 0.5$$

$$1 - \pi = (1 - 0.5) = 0.5$$

$$X = 0, 1, 2, 3, 4$$

Example: Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of an event of interest is 0.1?

$$x = 1, n = 5, and \pi = 0.1$$

$$P(X \bullet 1 \mid 5, 0.1) \bullet \frac{n!}{x! (n \ \ x)!} I^{x} (1 \ \ x)^{n \ \ x}$$

$$\bullet \frac{5!}{1! (5 \ \ x)!} (0.1)^{1} (1 \ \ x) (0.1)^{5 \ \ x}$$

$$\bullet (5)(0.1)(0.9)^{4}$$

$$\bullet (0.32805)$$

The Binomial Distribution Example

Suppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group of 10?

$$x = 2$$
, $n = 10$, and $\pi = 0.02$

The Binomial Distribution Shape

- The shape of the binomial distribution depends on the values of π and n
- Here, n = 5 and $\pi = .1$

Here, n = 5 and $\pi = .5$

The Binomial Distribution Using Binomial Tables (Available On Line)

n = 10									
x		π=.20	π=.25	π=.30	π=.35	π=.40	π=.45	π=.50	
0		0.1074	0.0563	0.0282	0.0135	0.0060	0.0025	0.0010	10
1		0.2684	0.1877	0.1211	0.0725	0.0403	0.0207	0.0098	9
2		0.3020	0.2816	0.2335	0.1757	0.1209	0.0763	0.0439	8
3		0.2013	0.2503	0.2668	0.2522	0.2150	0.1665	0.1172	7
4		0.0881	0.1460	0.2001	0.2377	0.2508	0.2384	0.2051	6
5		0.0264	0.0584	0.1029	0.1536	0.2007	0.2340	0.2461	5
6		0.0055	0.0162	0.0368	0.0689	0.1115	0.1596	0.2051	4
7		0.0008	0.0031	0.0090	0.0212	0.0425	0.0746	0.1172	3
8		0.0001	0.0004	0.0014	0.0043	0.0106	0.0229	0.0439	2
9		0.0000	0.0000	0.0001	0.0005	0.0016	0.0042	0.0098	1
10		0.0000	0.0000	0.0000	0.0000	0.0001	0.0003	0.0010	0
		π=.80	π=.75	π=.70	π=.65	π=.60	π=.55	π=.50	x

Examples:

$$n = 10, \pi = 0.35, x = 3$$
: $P(X = 3|10, 0.35) = 0.2522$

$$n = 10, \pi = 0.75, x = 8$$
: $P(X = 8|10, 0.75) = 0.2816$

Binomial Distribution Characteristics

Mean

$$\mu \bullet E(X) \bullet n$$

Variance and Standard Deviation

$$\sigma^{2}$$
 $n (1-n)$

$$\sigma^b \sqrt{n R (1-R)}$$

Where n = sample size

 π = probability of the event of interest for any trial

 $(1 - \pi)$ = probability of no event of interest for any trial

The Binomial Distribution Characteristics

Examples

$$\sigma \bullet \sqrt{n\pi(1-\pi)} \bullet \sqrt{(5)(.1)(1 \ \text{\cancel{k}}.1)}$$
 $\bullet 0.6708$

The Poisson Distribution Definitions

- You use the Poisson distribution when you are interested in the number of times an event occurs in a given area of opportunity.
- An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur.
 - The number of scratches in a car's paint
 - The number of mosquito bites on a person
 - The number of computer crashes in a day

The Poisson Distribution

- Apply the Poisson Distribution when:
 - You wish to count the number of times an event occurs in a given area of opportunity
 - The probability that an event occurs in one area of opportunity is the same for all areas of opportunity
 - The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunity
 - The probability that two or more events occur in an area of opportunity approaches zero as the area of opportunity becomes smaller
 - The average number of events per unit is (lambda)

Poisson Distribution Formula

where:

x = number of events in an area of opportunity

→ = expected number of events

e = base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

Mean

Variance and Standard Deviation

where + = expected number of events

Using Poisson Tables (Available On Line)

х	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90
0	0.9048	0.8187	0.7408	0.6703	0.6065	0.5488	0.4966	0.4493	0.4066
1	0.0905	0.1637	0.2222	0.2681	0.3033	0.3293	0.3476	0.3595	0.3659
2	0.0045	0.0164	0.0333	0.0536	0.0758	0.0988	0.1217	0.1438	0.1647
3	0.0002	0.0011	0.0033	0.0072	0.0126	0.0198	0.0284	0.0383	0.0494
4	0.0000	0.0001	0.0003	0.0007	0.0016	0.0030	0.0050	0.0077	0.0111
5	0.0000	0.0000	0.0000	0.0001	0.0002	0.0004	0.0007	0.0012	0.0020
6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0002	0.0003
7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Example: Find $P(X = 2 | \mathbb{Z} = 0.50)$

$$P(X^{\flat} 2|0.50)^{\flat} \frac{e^{i\lambda}\lambda^{x}_{\ \flat}}{x!} \frac{e^{i0.50}(0.50)^{2}_{\ \flat}}{2!} 0.0758$$

Graph of Poisson Probabilities

Graphically:

a = 0.50

	3 =
X	0.50
0	0.6065
1	0.3033
2	0.0758
3	0.0126
4	0.0016
5	0.0002
6	0.0000
7	0.0000

Poisson Distribution Shape

The shape of the Poisson Distribution depends on the parameter +:

$$+ = 0.50$$

$$+ = 3.00$$

Chapter Summary

In this chapter we covered:

- The properties of a probability distribution.
- To compute the expected value and variance of a probability distribution.
- To compute probabilities from binomial, and Poisson distributions.
- To use the binomial, and Poisson distributions to solve business problems